
Developments in random matrix theory

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 R1

(http://iopscience.iop.org/0305-4470/36/12/201)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 02/06/2010 at 11:29

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/12
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) R1–R10 PII: S0305-4470(03)60304-5

INTRODUCTORY REVIEW

Developments in random matrix theory

P J Forrester1, N C Snaith2 and J J M Verbaarschot3

1 Department of Mathematics and Statistics, University of Melbourne, Victoria 3010, Australia
2 School of Mathematics, University of Bristol, University Walk, Clifton, Bristol BS8 1TW, UK
3 Department of Physics and Astronomy, SUNY Stony Brook, Stony Brook, NY 11790, USA

E-mail: P.Forrester@ms.unimelb.edu.au, N.C.Snaith@bristol.ac.uk and
jacobus.verbaarschot@stonybrook.edu

Received 4 March 2003, in final form 10 March 2003
Published 20 March 2003
Online at stacks.iop.org/JPhysA/36/R1

Abstract
In this introduction to the Journal of Physics A special issue on random matrix
theory, we give a review of the main historical developments in random matrix
theory. A short summary of the papers that appear in this special issue is also
given.

1. Introduction

Random matrix theory has matured into a field with applications in many branches of physics
and mathematics. A large number of physicists and mathematicians have been fascinated
by this subject that has turned out to be surprisingly rich and far reaching. Paraphrasing
Dyson, random matrix theory is a new kind of statistical mechanics where the realization of
the system is not relevant. Instead of having an ensemble of states we have an ensemble of
Hamiltonians. Ergodicity is now the equivalence of spectral averaging and the averaging over
this ensemble.

Random matrix theory has been particularly successful in three areas: first, in describing
level correlations on the scale of the average level spacing; second, in providing the generating
function for combinatorial factors of planar diagrams and, third, as an exactly solvable model
with intricate connections to the theory of integrable systems. One of the reasons for the
success of random matrix theory is universality: eigenvalue correlations on the scale of
the average level spacing do not depend on the probability distribution. This property is at
the very foundation of random matrix theory. It suggests that random matrix theory correlations
of eigenvalues should be the rule rather than the exception. However, the most important reason
for studying random matrix theory is that its predictions do occur in nature in systems as varied
as nuclear energy levels, zeros of the Riemann ζ function and sound waves in quartz crystals.
Another of the roles of random matrix theory is that the large-N limit of its partition function is
a generating function for planar diagrams which have played an important role in quantum field
theory. For example, they are the leading contributions to QCD with a large number of colours,
and they are dual to triangulations of a random surface and thus describe two-dimensional
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quantum gravity. In addition to this, random matrix theory has attracted a great deal of interest
because of the mathematical challenges it poses. The problems are highly nontrivial, but, with
sufficient effort, many of the questions that arise in this field can be answered in full.

It is hard not to be fascinated by random matrix theory. Everyone who works in this
field has experienced the amazement of obtaining truly universal behaviour by diagonalizing
a large random matrix. Nowadays, as we can see from the contributions to this special issue,
the excitement about the subject is still as much alive as when it was first created. In this
introduction to the special issue we give a short summary of the history of random matrix
theory. The historical perspective is certainly coloured by our personal experience, and, for
a somewhat different perspective, we refer the reader to the introduction in the review by the
Heidelberg group [1].

2. History of random matrix theory

Random matrix theories have fascinated both mathematicians and physicists since they were
first introduced in mathematical statistics by Wishart in 1928 [2]. After a slow start, the
subject gained prominence when Wigner [3] introduced the concept of statistical distribution
of nuclear energy levels in 1950. However, it took until 1955 before Wigner [4] introduced
ensembles of random matrices. In that paper he also introduced the large-N expansion and
realized that the leading order contribution to the expectation values of moments of the random
Hamiltonian is given by planar diagrams. In 1956, Wigner [5] derived the Wigner surmise
from the level spacing distribution of an ensemble of 2 × 2 matrices after level repulsion
had been predicted by Landau and Smorodinksy [6] and observed by Gurevich and Pevsner
[7]. The idea of invariant random matrix ensembles was introduced in physics by Porter and
Rosenzweig [8] after it had appeared earlier in the mathematical literature. A mathematically
rigorous analysis of spacing distributions was first given by Gaudin [9] and Mehta [10]. To
analyse the eigenvalue density Mehta [11] invented the orthogonal polynomial method.

The mathematical foundations of random matrix theory were established in a series
of beautiful papers by Dyson [12–16]. He introduced the classification of random matrix
ensembles according to their invariance properties under time reversal [12, 16]. As we all
know, only three different possibilities exist: a system is not time reversal invariant, or a
system is time reversal invariant with the square of the time reversal invariance operator either
equal to 1 or −1. The matrix elements of the corresponding random matrix ensembles are
complex, real and self-dual quaternion, respectively, which from a mathematical viewpoint
exhaust the distinct real commutative normed division algebras, or in effect number systems.
The corresponding invariant Gaussian ensembles of Hermitian random matrices are known
as the Gaussian unitary ensemble (GUE), the Gaussian orthogonal ensemble (GOE) and the
Gaussian symplectic ensemble (GSE), in that order.

Dyson [12] also formulated the underlying philosophy of random matrix theory. In his
words, ‘What is here required is a new kind of statistical mechanics, in which we renounce
exact knowledge not of the state of the system but of the system itself. We picture a complex
nucleus as a “black box” in which a large number of particles are interacting according to
unknown laws. The problem then is to define in a mathematically precise way an ensemble of
systems in which all possible laws of interaction are equally possible’. This was made more
precise by Balian [17], who obtained the Gaussian random matrix ensembles from minimizing
the information entropy.

A second important result of Dyson’s papers [14, 15] was the relation between random
matrix theory and the theory of exactly integrable systems: the partition function of a random
matrix ensemble is equivalent to the partition function of a log-potential Coulomb gas in one
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dimension at three special temperatures, each with solvability properties not shared for general
temperatures. Moreover the evolution of the eigenvalues of parameter-dependent extensions
of the Gaussian ensembles was shown to be controlled by a Fokker–Planck operator which also
specifies the Brownian evolution of the Coulomb gas. These results were further explored by
Sutherland [18] when he realized that the Calogero–Sutherland quantum many body system
[19, 18], for which the Hamiltonian can be constructed from N independent commuting
operators and so is integrable, is mathematically equivalent to Dyson’s Brownian motion
model. The relation between random matrix theory and integrable systems is discussed
extensively in the monograph by Forrester [20]. A review of one-dimensional integrable
systems that touches on many ideas that also appear in random matrix theory is given in the
book by Korepin et al [21]. A third idea that appeared in Dyson’s paper [12] is the application
of Shannon’s information entropy to random matrix spectra.

The early developments in random matrix theory are well summarized in the first edition
of the monograph by Mehta [22]. This has been a very influential book containing many
mathematical details which have been proved to be extremely useful over the years. A second
significant book is by Porter [23]. It contains reprints of the important papers on random
matrix theory that were written before 1965.

About the same time as the early development of random matrix theory in nuclear physics,
the field of disordered systems was born from the work by Anderson [24] on the localization
of wavefunctions in one-dimensional disordered systems. He considered a one-dimensional
lattice with a random potential at each lattice point. He found that the eigenfunctions of this
system are exponentially localized. His work had a strong impact on both experimental and
theoretical solid state physics. Another early application of random matrix theory is the theory
of small metallic particles by Gorkov and Eliasberg [25], which nowadays would be part of
mesoscopic physics.

Random matrix theory, which was first formulated in mathematical statistics, continued to
develop in mathematics independently of the developments in physics. Important results with
regard to the integration measure of invariant random matrix ensembles were obtained by Hua
[26]. His results of more than a decade of work are summarized in his book that appeared in
1959 but which remained largely unknown. Only a small number of mathematicians worked
on integrals that appear in random matrix theory. One very important result was obtained
by Harish-Chandra [27], who evaluated a unitary matrix integral that is now known as the
Harish-Chandra–Itzykson–Zuber integral [27, 28]. Zinn-Justin and Zuber [29] review this
topic in the present special issue. Also the work of Selberg [30] is well known, not in the least
because Madan Lal Mehta devoted a chapter of the second edition of his book [31] to this
subject. Another noteworthy contribution is the introduction of zonal polynomials by James
[32]. The 1982 book of Muirhead [33] ties together matrix integrals and zonal polynomials
as they are relevant in mathematical statistics. Girko has written a number of mathematical
books (see, e.g., [34]) relating to analytic properties of the eigenvalue distribution of large
random matrices. Voiculescu [35] used random matrices as a primary example of the concept
of free non-commutative random variables in operator algebras. However, the mathematical
literature remained largely unnoticed by physicists until recently.

What is more surprising is that the theory of disordered systems and the application
of random matrix theory in nuclear physics proceeded more or less independently until the
seminal work by Efetov on the supersymmetric method [36] and its application [37] to the
theory of small metallic particles and to localization theory [38] . This is even more remarkable
since both the papers by Anderson and Dyson were written at Princeton.

The main developments in random matrix theory in the decade after the appearance of
the first edition of Mehta’s book were applications to nuclear physics. In particular, the
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statistical theory of S-matrix fluctuations received a great deal of attention. The first work in
this direction dates back to Wigner [39], who simultaneously studied the distribution of the
widths and the spacings of nuclear resonances, and to Porter and Thomas [40], who introduced
the Porter–Thomas distribution for nuclear decay widths. Correlations of cross-sections at two
different energies were considered in [41] and are now known as Ericson fluctuations. The
formulation of the theory of S-matrix fluctuations was completed in the work of Agassi et al
[42] . In this paper the authors introduced resummation techniques which later received much
more attention in the field of impurity scattering, introduced earlier in the book by Abrikosov
et al [43]. The problem of the distribution of poles of S-matrices was also the motivation of
Ginibre [44] for introducing what is now known as the Ginibre ensemble with eigenvalues
uniformly distributed inside a disc in the complex plane. His paper initiated the subfield of
non-Hermitian random matrix theory which is reviewed by Fyodorov and Sommers [45] in
this issue.

In 1973 Montgomery [46] made a conjecture for the asymptotic limit of the two-point
correlation function of the zeros of the Riemann ζ function on the critical line. Together
with Dyson he realized that his conjectured result is the two-point function of the GUE. The
connection was extended to higher correlation functions of the Riemann zeros by Hejhal [47]
and Rudnick and Sarnak [48], although the full correspondence of the correlation functions
with random matrix theory has still not been proved. A heuristic derivation of these results
using the Hardy–Littlewood conjecture for the correlation between primes, was given by
Bogomolny and Keating in 1995 [49, 50]. Mathematically rigorous results relating the
two-point functions for the zeros of families of finite field zeta functions and eigenvalues
of random matrices from the classical groups are the topic of the monograph by Katz
and Sarnak [51].

The conjectured correspondence of the statistics of these zeros of the Riemann ζ function
with the n-point correlation function of random matrix eigenvalues has recently meant that
random matrix theory has become very useful for conjecturing quantities in number theory that
were previously unattainable by any method. These include mean values of the Riemann zeta
function and other L-functions [52–56], the order of vanishing at special values of L-functions
[57], as well as discrete moments of the derivative of the Riemann zeta function [58, 59] and
the horizontal distribution of the zeros of the derivative [60]. For more details there is a review
in this issue by Keating and Snaith [61].

In the period 1975–1985, random matrix theory developed rapidly and became unified
with the theory of disordered systems. The first step in this direction was made by Edwards
and Anderson [62] who, in their influential paper on spin glasses, introduced the replica
trick. This provided a natural framework for a field theoretical formulation of the Anderson
model which was introduced a few years later by Wegner in 1979 [63]. In this formulation,
symmetries and the spontaneous breaking of symmetries led to a new paradigm in the theory
of Anderson localization [64–66]. It was soon realized that the replica formulation only
works well for perturbative calculations. This problem was solved by the introduction of the
supersymmetric method [36]. In this method the determinants in the generating function of
the resolvent are quenched by taking a ratio of two determinants instead of the n → 0 limit
of the nth power of the determinant. Relying on an earlier work by Wegner [63] using the
replica trick, Efetov showed that the partition function of a disordered system is given by
a supersymmetric nonlinear σ -model. He identified a domain of energy differences where
the kinetic term of the nonlinear σ model can be neglected. In this domain the two-point
correlation functions coincide with the results derived by Dyson. The energy scale below
which the partition function is dominated by zero momentum modes is known as the Thouless
energy [67].
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The supersymmetric method has been very fruitful. Efetov [36] obtained new results
for one-dimensional disordered wires. Exact results were obtained for the theory of S-matrix
fluctuations [68]. Relations between the orthogonal and symplectic symmetry classes were
derived [69] from the supersymmetric partition function. In the subsequent years many
more new results were derived by means of the supersymmetric method. Among others, we
mention results for parametric correlations [70] where eigenvalue correlations for different
values of an external parameter are considered. An elaborate discussion of applications of the
supersymmetric method to disordered systems is given in the book by Efetov [71].

Exact results for S-matrix fluctuations were obtained in a completely independent way
by a Mexican group [72]. The exact distribution function of S-matrices was found starting
from the three assumptions of analyticity, ergodicity and maximizing the information entropy
[17]. Another effort in nuclear physics was the introduction of random matrix ensembles that
reflected the few-body nature of the interaction. In particular, French and co-workers have
pursued this direction of research (see [73] for a review). In this issue Benet and Weidenmueller
[74] review recent progress in this field.

A major development was the experimental discovery of universal conductance
fluctuations by Webb and Washburn in 1986 [75] after having been predicted theoretically by
Altshuler [76] and Stone and Lee [77, 78]. This discovery started the new field of chaotic
quantum dots. The transport properties of these quantum dots could be described by the
supersymmetric nonlinear σ -model that had been used for the theory of S-matrix fluctuations
in compound nuclei. In fact, a compound nucleus is a chaotic quantum dot (see [79, 80, 81]
in this issue for reviews).

A few years before the discovery of universal conductance fluctuations, random matrix
theory was applied to quantum field theory. Through the work of ’t Hooft [82] we know that
in the limit of a large number of colours, the QCD partition function is dominated by planar
diagrams. This is also the case for the large-N limit of random matrix theory. In [83] this
was exploited to calculate the combinatorial factors that enter in the large-Nc limit of QCD by
means of random matrix theory. A second innovative idea which appeared in that paper is the
formulation of the calculation of the resolvent in random matrix theories as a Riemann–Hilbert
problem. This approach has received more attention in the recent mathematical literature [84].

Random matrix theory has had impact on several areas of quantum field theory: lattice
QCD, two-dimensional gravity, the Euclidean Dirac spectrum and the Seiberg–Witten [85]
solution of two-dimensional supersymmetric gauge theories. An important result is the
Eguchi–Kawai [86] reduction. These authors showed that in the limit of a large number
of colours, certain gluonic correlation functions of pure Yang–Mills theory can be reduced to
an integral over four unitary matrices. In two spatial dimensions this reduction results in an
integral over a single unitary matrix which can be evaluated in the large-N limit.

A unitary matrix integral also occurs in the low-energy limit of QCD. Because of the
spontaneous breaking of chiral symmetry, its low-energy degrees of freedom are the Goldstone
modes which are parametrized by a unitary matrix valued field [87]. Below the Thouless
energy for this system the kinetic term of the effective Lagrangian can be neglected and the
low-energy limit of the QCD partition function is given by the unitary matrix integral [88].
In this domain the eigenvalues of the Dirac operator are correlated according to a random
matrix theory with the additional involutive (chiral) symmetry of the QCD Dirac operator [89,
90]. The same symmetry is also found in two-sublattice disordered systems where hopping
only occurs in between the sublattices [91]. The eigenvalue spectrum around zero of these
chiral ensembles was first derived in [92]. An important difference between two-sublattice
systems and QCD is the topology of the random matrix (i.e. the number of exact zeros) and
the fermion determinant. In two-sublattice systems one is only interested in quenched results
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at zero topology whereas in QCD the fermion determinant and its zero modes are essential.
Also, in the case of the chiral ensembles we have three different symmetry classes depending
on the reality content of the matrix elements. Most of the work on chiral random matrix theory
and its applications to the Dirac spectrum in QCD was done in the second half of the nineties
(see [93] for a review).

In the theory of disordered superconductors four more random matrix ensembles can be
introduced [94, 95], thus distinguishing a total of ten random matrix ensembles. It was noted
by Dyson [96] that each of the three Wigner–Dyson random matrix theories corresponds to a
symmetric space. Zirnbauer [97] showed that this observation can be generalized to all ten
symmetry classes of random matrix ensembles with a one-to-one correspondence to each of
the large families in the Cartan classification of symmetric spaces.

There have been other attempts to derive QCD from a matrix model. Perhaps best known
is the induced QCD partition function of Kazakov and Migdal [98] where the lattice gauge
field is coupled to an adjoint scalar field. The gauge field can be integrated out by means of the
Harish-Chandra–Itzykson–Zuber integral resulting in a partition function for the eigenvalues
of the adjoint scalar field. This partition function can be evaluated by saddle point methods
in the large-N limit. More recently, it has been shown that that the so-called prepotential of
N = 2 supersymmetric theory can be derived from the large-N limit of a random matrix theory
[99].

The partition function of 2D gravity is a sum over random surfaces which can be described
by means of a triangulation [100, 101]. The sum over triangulated surfaces can be written
in terms of a random matrix theory partition function. It has been conjectured [102–104]
that the double scaling limit of this theory describes the continuum limit of the 2D gravity
partition function. This field brought two new ideas into random matrix theory: universality
[105–107], i.e. that observables are independent of the probability potential, and the connection
with integrable systems. In the context of quantum gravity it is natural to consider an arbitrary
polynomial probability potential. Integrable hierarchies were obtained from differential
equations in the coefficients of the probability potential [108, 109]. A good review of this
topic was given by Di Francesco et al [110].

Earlier integrable hierarchies entered in a completely different way. In 1980 it was found
by the Kyoto school [111] that the probability of a gap-free interval in the infinite GUE is
a τ -function for a completely integrable system specifying the isomonodromy deformation
of a coupled system of linear differential equations. This had the consequence that the
spacing distribution could be expressed in terms of a Painlevé V transcendent. Later it was
found that the distribution of the largest eigenvalue in the GUE is given by the solution of
a Painlevé II equation [112]. This development found application in the solution of a long
standing mathematical problem: specifying the limiting distribution of the longest increasing
subsequence length of a random permutation [113]. In fact the sought distribution is the
same as that for the largest eigenvalue in the GUE. The increasing subsequence problem
can equivalently be formulated as the polynuclear growth model in 1 + 1 dimension [114],
and similar relationships with random matrix fluctuations are also known for certain tiling
problems [115].

The question of why random matrix theory works has been addressed from many different
points of view. It was realized early on that the detailed properties of eigenvalue correlations
do not depend on the specifics of the probability distribution. One important reason for random
matrix theory to work is already mentioned in a work of Dyson [12], asserting that if a system
is sufficiently complex, the state of the system is no longer important. However, it took until
the early eighties before it was realized that the key reason is that the corresponding classical
system is chaotic. Although there have been a few earlier studies relating random matrix
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theory correlations to classical chaos [116, 117], it was formulated explicitly in a ground
breaking paper by Bohigas et al [118] who, based on a numerical study of the Sinai billiard
[119], conjectured that level correlations on the scale of the average level spacing are given
by random matrix theory if the corresponding classical system is chaotic. This conjecture
has been confirmed for numerous systems. The reverse was also shown numerically to be
true: if the system is not completely chaotic, the spectral correlations are not given by the
Wigner–Dyson ensembles [120, 121]. Although a complete proof of this conjecture is still
lacking, a considerable amount of analytical understanding has been obtained on the basis of a
semiclassical analysis [122, 123]. These inter-relations mean that random matrix theory plays
an essential role in the study of quantum chaos, a fact which is given prominence in the books
by Haake [124] and Stoeckmann [125].

In this short historical overview we have seen that random matrix theory has been applied
to wide ranging fields. Its scope has by far not yet been exhausted as illustrated by recent
publications that are as varied as applications to financial correlations [126, 127] and wireless
communication [128].
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